Sains Malaysiana 52(8)(2023): 2395-2406
http://doi.org/10.17576/jsm-2023-5208-16
Recursive
Prediction Model: A Preliminary Application to Lassa Fever Outbreak in Nigeria
(Model Ramalan Rekursif: Aplikasi Awal untuk Wabak Demam Lassa di Nigeria)
FRIDAY
ZINZENDOFF OKWONU1, NOR AISHAH AHAD2,3,*, HASHIBAH HAMID3 & OLIMJON SHUKUROVICH SHARIPOV4
1Department of Mathematics, Faculty of
Science, Delta State University, P.M.B.1, Abraka,
Nigeria
2Institute of Strategic Industrial Decision Modelling,
School of Quantitative Sciences, College of Arts and Sciences, Universiti Utara Malaysia, 06010 UUM Sintok,
Kedah, Malaysia
3School of Quantitative Sciences, College of Arts and
Sciences, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia
4School of Mathematics, Department of Statistics,
National University of Uzbekistan
Diserahkan: 10 Disember 2022/Diterima: 24 Julai 2023
Abstract
Lassa fever (LF)
is endemic in West Africa and Nigeria in particular. Since 1969 when the
disease was discovered, a seasonal outbreak is often reported in Nigeria. Many
researchers have reported inconsistent or varying numbers of suspected,
confirmed and death cases since 2012 to date. To enhance this reportage, and
due to the high mortality rate associated with LF, it is pertinent to design a
suitable and robust model that could predict or estimate the number of LF cases
based on the onset data. To achieve these, we proposed a recursive prediction
(RP) model that could do predictions with the onset data. The Pearson
correlation coefficient
(R) and R2 are applied to determine the performance
analysis of the model. The RP model predicted 96.7% confirmed cases and 89.6%
death cases for the first three months of 2022 based on the onset data. The
model was also applied to predict COVID-19 death cases during the six weeks of
the outbreak in India. The result showed a comparable prediction with the
regression output for the COVID-19 death cases. This study demonstrated that
the proposed model could be applied to perform prediction for any disease of
unknown etiology during the onset of the disease outbreak without any treatment
similar to the COVID-19 outbreak. The performance analysis of the RP showed
that the model is useful to predict the increasing trend of an outbreak of a
disease with unknown etiology without prior treatment experience and vaccines.
Keywords: Case
fatality ratio; Lassa fever;
prediction; recursive
Abstrak
Demam Lassa (LF) ialah endemik khusus di Afrika Barat dan Nigeria. Sejak
1969 apabila penyakit itu ditemui, wabak bermusim sering dilaporkan di Nigeria.
Ramai penyelidik telah melaporkan bilangan kes yang disyaki, disahkan dan
kematian yang tidak tekal atau berberbeza-beza sejak 2012 hingga kini. Untuk
menambahbaik pelaporan ini dan disebabkan oleh kadar kematian yang tinggi yang
dikaitkan dengan LF, adalah penting untuk memperkenalkan model yang sesuai dan
teguh yang boleh meramalkan atau menganggarkan bilangan kes LF berdasarkan data
permulaan. Untuk mencapai tujuan ini, kami mencadangkan model ramalan rekursif
(RP) yang boleh melakukan ramalan dengan data permulaan. Pekali korelasi
Pearson (R) dan R2 digunakan untuk menentukan analisis prestasi
model. Model RP meramalkan 96.7% kes disahkan dan 89.6% kes kematian untuk tiga
bulan pertama 2022 berdasarkan data permulaan. Model itu juga digunakan untuk
meramalkan kes kematian COVID-19 selama enam minggu wabak berlaku di India.
Hasil menunjukkan ramalan yang setanding dengan modelregresi untuk kes kematian
COVID-19. Kajian juga mendapati bahawa model yang dicadangkan boleh digunakan
untuk melakukan ramalan bagi mana-mana penyakit yang etiologinya tidak
diketahui semasa permulaan wabak penyakit tanpa sebarang rawatan, seperti wabak
COVID-19. Analisis prestasi RP mendedahkan bahawa model ini berguna untuk
meramalkan peningkatan trend wabak penyakit dengan etiologi yang tidak
diketahui tanpa pengalaman rawatan dan vaksin.
Kata kunci: Demam Lassa; nisbah kematian kes; ramalan; rekursif
RUJUKAN
Africa CDC. (n.d.). https://africacdc.org/disease/lassa-fever/
Ajayi, N.A., Nwigwe, C.G., Azuogu, B.N., Onyire, B.N., Nwonwu, E.U., Ogbonnaya, L.U., Onwe, F.I., Ekaete, T., Günther, S. & Ukwaja, K.N.
2013. Containing a Lassa fever epidemic in a resource-limited setting: outbreak
description and lessons learned from Abakaliki,
Nigeria (January-March 2012). International Journal of Infectious Diseases 17(11). e1011-e1016. https://doi.org/10.1016/j.ijid.2013.05.015
Akpede, G.O., Asogun, D.A., Okogbenin, S.A. & Okokhere,
P.O. 2018. Lassa fever outbreaks in Nigeria. Expert Review of Anti-Infective
Therapy 16(9): 663-666. https://doi.org/10.1080/14787210.2018.1512856
Anderson, E., d’Orey, M.A.J., Duvendack, M. & Esposito, L. 2018. Does government spending affect income poverty? A meta-regression analysis. World
Development 103: 60-71. https://doi.org/10.1016/j.worlddev.2017.10.006
Braun, M.R., Altan, H. & Beck,
S.B.M. 2014. Using regression analysis to predict the future energy consumption
of a supermarket in the UK. Applied Energy 130: 305-313.
https://doi.org/10.1016/j.apenergy.2014.05.062
Collins, G.S., Reitsma, J.B.,
Altman, D.G. & Moons, K.G.M. 2015. Transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD
Statement. European Urology 350: g7584.
https://doi.org/10.1016/j.eururo.2014.11.025
Fisher-Hoch, S.P., Tomori, O., Nasidi, A., Perez-Oronoz, G.I., Fakile, Y., Hutwagner, L. &
McCormick, J.B. 1995. Review of cases of nosocomial Lassa fever in Nigeria: The
high price of poor medical practice. BMJ (Clinical Research Ed.) 311(7009): 857-859. https://doi.org/10.1136/bmj.311.7009.857
Frame, J.D., Baldwin, J.M., Gocke,
D.J. & Troup, J.M. 1970. Lassa fever, a new virus disease of man from West
Africa. I. Clinical description and pathological findings. The American
Journal of Tropical Medicine and Hygiene 19(4): 670-676.
https://doi.org/10.4269/ajtmh.1970.19.670
Ghosal, S., Sengupta, S., Majumder, M. & Sinha, B. 2020. Linear Regression
Analysis to predict the number of deaths in India due to SARS-CoV-2 at 6 weeks
from day 0 (100 cases - March 14th 2020). Diabetes & Metabolic Syndrome:
Clinical Research & Reviews 14(4): 311-315.
https://doi.org/10.1016/j.dsx.2020.03.017
Grace, J.U.A., Egoh, I.J. & Udensi, N. 2021. Epidemiological trends of Lassa fever in
Nigeria from 2015-2021: A review. Therapeutic Advances in Infectious Disease 8: 20499361211058252. https://doi.org/10.1177/20499361211058252
Heinemann, F., Moessinger, M.D.
& Yeter, M. 2018. Do fiscal rules constrain
fiscal policy? A meta-regression-analysis. European Journal of Political
Economy 51. https://doi.org/10.1016/j.ejpoleco.2017.03.008
Hemingway, H., Croft, P., Perel,
P., Hayden, J.A., Abrams, K., Timmis, A., Briggs, A., Udumyan, R., Moons, K.G.M., Steyerberg,
E.W., Roberts, I., Schroter, S., Altman, D.G. &
Riley, R.D. 2013. Prognosis research strategy (PROGRESS) 1: A framework for
researching clinical outcomes. BMJ 346: e5595.
https://doi.org/10.1136/bmj.e5595
Jee, S.H., Jang, Y., Oh, D.J., Oh, B.H., Lee, S.H., Park, S.W., Seung, K.B., Mok, Y., Jung,
K.J., Kimm, H., Yun, Y.D., Baek,
S.J., Lee, D.C., Choi, S.H., Kim, M.J., Sung, J., Cho, B., Kim, E.S., Yu, B.Y.,
Lee, T-Y., Kim, J.S., Lee, Y-J., Oh, J-K., Kim, S.H., Park, J-K., Koh, S.B., Park, S.B., Lee, S.Y., Yoo,
C-I., Kim, M.C., Kim, H-K., Park, J-S., Kim, H.C., Lee, G.J. & Woodward, M.
2014. A coronary heart disease prediction model: the Korean Heart Study. BMJ Open 4(5): e005025. https://doi.org/10.1136/bmjopen-2014-005025
Kattan, M.W. & Gerds, T.A. 2020. A
framework for the evaluation of statistical prediction models. In CHEST 158(1 Supplement): S29-S38. https://doi.org/10.1016/j.chest.2020.03.005
Laicane, I., Blumberga, D., Blumberga, A. & Rosa, M. 2015. Comparative multiple
regression analysis of household electricity use in Latvia: Using smart meter
data to examine the effect of different household characteristics. Energy
Procedia 72: 49-56. https://doi.org/10.1016/j.egypro.2015.06.008
Laupacis, A., Sekar, N. & Stiell, I.G. 1997. Clinical prediction rules. A review and
suggested modifications of methodological standards. JAMA 277(6):
488-494.
Lee, Y.H., Bang, H. & Kim, D.J. 2016. How to establish
clinical prediction models. Endocrinology and Metabolism 31(1): 38-44.
https://doi.org/10.3803/EnM.2016.31.1.38
Liu, J. 2004. Predictive value for the Chinese population of
the Framingham CHD risk assessment tool compared with the Chinese
Multi-Provincial Cohort Study. JAMA 291(21): 2591-2599.
https://doi.org/10.1001/jama.291.21.2591
Mahdiani, M.R. & Khamehchi, E. 2016. A
modified neural network model for predicting the crude oil price. Intellectual
Economics 10(2): 71-77. https://doi.org/10.1016/j.intele.2017.02.001
Moons, K.G.M., Royston, P., Vergouwe,
Y., Grobbee, D.E. & Altman, D.G. 2009. Prognosis
and prognostic research: What, why, and how? BMJ 338: b375.
https://doi.org/10.1136/bmj.b375
Musa, S.S., Zhao, S., Abdullahi,
Z.U., Habib, A.G. & He, D. 2022. COVID-19 and Lassa fever in Nigeria: A
deadly alliance? International Journal of Infectious Diseases 117:
45-47. https://doi.org/10.1016/j.ijid.2022.01.058
NATHNaC. 2022. March 18. Lassa Fever in Nigeria.
https://Travelhealthpro.Org.Uk/Updates.Php?Base=1599.
NCDC. 2022, April 1. An Update of Lassa Fever Outbreak in
Nigeria.
https://Ncdc.Gov.Ng/Diseases/Sitreps/?Cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20Nigeria
NCDC 2019. Lassa Fever.
https://www.ncdc.gov.ng/diseases/info/L.
Okoro, O.A., Bamgboye, E., Dan-Nwafor, C., Umeokonkwo, C., Ilori, E., Yashe, R., Balogun, M., Nguku, P. & Ihekweazu, C. 2020. Descriptive epidemiology of Lassa fever
in Nigeria, 2012-2017. Pan African Medical Journal 37(15).
https://doi.org/10.11604/pamj.2020.37.15.21160
Okwonu, F.Z., Ahad, N.A., Hamid, H., Muda, N. & Sharipov, O.S.
2023. Enhanced robust univariate classification methods for solving outliers
and overfitting problems. Journal of Information Communication Technology 22(1): 1-30.
Okwonu, F.Z., Ahad, N.A., Apanapudor, J.S. & Arunaye,
F.I. 2021. Robust multivariate correlation techniques: A confirmation analysis
using COVID-19 data set. Pertanika Journal
of Science and Technology 29(2): 999-1015.
https://doi.org/10.47836/pjst.29.2.16
Okwonu, F.Z., Laro Asaju, B. &
Irimisose Arunaye, F. 2020. Breakdown
analysis of Pearson correlation coefficient and robust correlation methods. IOP
Conference Series: Materials Science and Engineering 917: 012065.
https://doi.org/10.1088/1757-899X/917/1/012065
Onyeji, E. 2022. In 2021, Nigeria Witnessed Decline in Lassa
Fever Infections, Deaths – Official. 10 January 2022.
https://www.premiumtimesng.com/news/more-news/505001-in-2021-nigeria-witnessed-decline-in-lassa-fever-infections-deaths-official.html?tztc=1
Pérez-Rave, J.I., Correa-Morales, J.C. & González-Echavarría, F. 2019. A machine learning approach to big
data regression analysis of real estate prices for inferential and predictive
purposes. Journal of Property Research 36(1): 59-96.
https://doi.org/10.1080/09599916.2019.1587489
Rath, S., Tripathy, A. & Tripathy, A.R. 2020. Prediction of new active cases of
coronavirus disease (COVID-19) pandemic using multiple linear regression model. Diabetes and Metabolic Syndrome: Clinical Research and Reviews 14(5):
1467-1474. https://doi.org/10.1016/j.dsx.2020.07.045
Redding, D.W., Gibb, R., Dan-Nwafor,
C.C., Ilori, E.A., Yashe,
R.U., Oladele, S.H., Amedu,
M.O., Iniobong, A., Attfield,
L.A., Donnelly, C.A., Abubakar, I., Jones, K.E. & Ihekweazu, C. 2021. Geographical drivers and
climate-linked dynamics of Lassa fever in Nigeria. Nature Communications 12: 5759. https://doi.org/10.1038/s41467-021-25910-y
Richmond, J.K. & Baglole, D.J.
2003. Lassa fever: Epidemiology, clinical features, and social consequences. BMJ
(Clinical Research) 327(7426): 1271-1275. https://doi.org/10.1136/bmj.327.7426.1271
Royston, P., Moons, K.G.M., Altman, D.G. & Vergouwe, Y. 2009. Prognosis and prognostic research:
Developing a prognostic model. BMJ 338: b604.
https://doi.org/10.1136/bmj.b604
Shrestha, N. 2020. Detecting multicollinearity in regression analysis. American Journal of Applied Mathematics and
Statistics 8(2): 39-42. https://doi.org/10.12691/ajams-8-2-1
Steyerberg, E.W. & Vergouwe, Y. 2014.
Towards better clinical prediction models: Seven steps for development and an
ABCD for validation. European Heart Journal 35(29): 1925-1931.
https://doi.org/10.1093/eurheartj/ehu207
Steyerberg, E.W., Moons, K.G.M., van der Windt,
D.A., Hayden, J.A., Perel, P., Schroter,
S., Riley, R.D., Hemingway, H. & Altman, D.G. 2013. Prognosis Research Strategy
(PROGRESS) 3: Prognostic model research. PLoS Medicine 10(2): e1001381. https://doi.org/10.1371/journal.pmed.1001381
Uzoma, I.R., Dan-Nwafor, C., Ipadeola, O., Rimamdeyati, Y., Iniobong, A., Okoro, B., Namara, G., Uzoma, E., Ilori, E. & Ihekweazu, C.
2020. Increasing trend of Lassa fever outbreak in Nigeria: The more you look,
the more you see. International Journal of Infectious Diseases 101.
https://doi.org/10.1016/j.ijid.2020.09.936
van Smeden, M., Reitsma, J.B., Riley, R.D., Collins, G.S. & Moons, K.G.
2021. Clinical prediction models: Diagnosis versus prognosis. In Journal of
Clinical Epidemiology 132: 142-145.
https://doi.org/10.1016/j.jclinepi.2021.01.009
World Health Organization. 2022. Disease Outbreak News;
Lassa Fever-Nigeria. https://www.who.int/emergencies/disease-outbreak-news/item/lassa-fever---nigeria. Lassa Fever - Nigeria
Yaro, C.A., Kogi, E., Opara, K.N., Batiha, G.E.S., Baty, R.S., Albrakati, A., Altalbawy, F.M.A., Etuh, I.U.
& Oni, J.P. 2021. Infection pattern, case fatality rate and spread of Lassa
virus in Nigeria. BMC Infectious Diseases 21(1): 149.
https://doi.org/10.1186/s12879-021-05837-x
Zaresani, A. & Scott, A. 2021. Is the evidence on the
effectiveness of pay for performance schemes in healthcare changing? Evidence
from a meta-regression analysis. BMC Health Services Research 21: 175.
https://doi.org/10.1186/s12913-021-06118-8
Zhu, P. & Sun, F. 2020. Sports athletes’ performance
prediction model based on machine learning algorithm. Advances in
Intelligent Systems and Computing 1017: 498-505.
https://doi.org/10.1007/978-3-030-25128-4_62
*Pengarang untuk surat-menyurat; email: aishah@uum.edu.my
|