Sains Malaysiana 52(8)(2023): 2395-2406

http://doi.org/10.17576/jsm-2023-5208-16

 

Recursive Prediction Model: A Preliminary Application to Lassa Fever Outbreak in Nigeria

(Model Ramalan Rekursif: Aplikasi Awal untuk Wabak Demam Lassa di Nigeria)

 

FRIDAY ZINZENDOFF OKWONU1, NOR AISHAH AHAD2,3,*, HASHIBAH HAMID3 & OLIMJON SHUKUROVICH SHARIPOV4

 

 1Department of Mathematics, Faculty of Science, Delta State University, P.M.B.1, Abraka, Nigeria

2Institute of Strategic Industrial Decision Modelling, School of Quantitative Sciences, College of Arts and Sciences, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia

3School of Quantitative Sciences, College of Arts and Sciences, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia

4School of Mathematics, Department of Statistics, National University of Uzbekistan

 

Diserahkan: 10 Disember 2022/Diterima: 24 Julai 2023

 

Abstract

Lassa fever (LF) is endemic in West Africa and Nigeria in particular. Since 1969 when the disease was discovered, a seasonal outbreak is often reported in Nigeria. Many researchers have reported inconsistent or varying numbers of suspected, confirmed and death cases since 2012 to date. To enhance this reportage, and due to the high mortality rate associated with LF, it is pertinent to design a suitable and robust model that could predict or estimate the number of LF cases based on the onset data. To achieve these, we proposed a recursive prediction (RP) model that could do predictions with the onset data. The Pearson correlation coefficient (R) and R2 are applied to determine the performance analysis of the model. The RP model predicted 96.7% confirmed cases and 89.6% death cases for the first three months of 2022 based on the onset data. The model was also applied to predict COVID-19 death cases during the six weeks of the outbreak in India. The result showed a comparable prediction with the regression output for the COVID-19 death cases. This study demonstrated that the proposed model could be applied to perform prediction for any disease of unknown etiology during the onset of the disease outbreak without any treatment similar to the COVID-19 outbreak. The performance analysis of the RP showed that the model is useful to predict the increasing trend of an outbreak of a disease with unknown etiology without prior treatment experience and vaccines.

 

Keywords: Case fatality ratio; Lassa fever; prediction; recursive

 

Abstrak

Demam Lassa (LF) ialah endemik khusus di Afrika Barat dan Nigeria. Sejak 1969 apabila penyakit itu ditemui, wabak bermusim sering dilaporkan di Nigeria. Ramai penyelidik telah melaporkan bilangan kes yang disyaki, disahkan dan kematian yang tidak tekal atau berberbeza-beza sejak 2012 hingga kini. Untuk menambahbaik pelaporan ini dan disebabkan oleh kadar kematian yang tinggi yang dikaitkan dengan LF, adalah penting untuk memperkenalkan model yang sesuai dan teguh yang boleh meramalkan atau menganggarkan bilangan kes LF berdasarkan data permulaan. Untuk mencapai tujuan ini, kami mencadangkan model ramalan rekursif (RP) yang boleh melakukan ramalan dengan data permulaan. Pekali korelasi Pearson (R) dan R2 digunakan untuk menentukan analisis prestasi model. Model RP meramalkan 96.7% kes disahkan dan 89.6% kes kematian untuk tiga bulan pertama 2022 berdasarkan data permulaan. Model itu juga digunakan untuk meramalkan kes kematian COVID-19 selama enam minggu wabak berlaku di India. Hasil menunjukkan ramalan yang setanding dengan modelregresi untuk kes kematian COVID-19. Kajian juga mendapati bahawa model yang dicadangkan boleh digunakan untuk melakukan ramalan bagi mana-mana penyakit yang etiologinya tidak diketahui semasa permulaan wabak penyakit tanpa sebarang rawatan, seperti wabak COVID-19. Analisis prestasi RP mendedahkan bahawa model ini berguna untuk meramalkan peningkatan trend wabak penyakit dengan etiologi yang tidak diketahui tanpa pengalaman rawatan dan vaksin.

 

Kata kunci: Demam Lassa; nisbah kematian kes; ramalan; rekursif

RUJUKAN

Africa CDC. (n.d.). https://africacdc.org/disease/lassa-fever/

Ajayi, N.A., Nwigwe, C.G., Azuogu, B.N., Onyire, B.N., Nwonwu, E.U., Ogbonnaya, L.U., Onwe, F.I., Ekaete, T., Günther, S. & Ukwaja, K.N. 2013. Containing a Lassa fever epidemic in a resource-limited setting: outbreak description and lessons learned from Abakaliki, Nigeria (January-March 2012). International Journal of Infectious Diseases 17(11). e1011-e1016. https://doi.org/10.1016/j.ijid.2013.05.015

Akpede, G.O., Asogun, D.A., Okogbenin, S.A. & Okokhere, P.O. 2018. Lassa fever outbreaks in Nigeria. Expert Review of Anti-Infective Therapy 16(9): 663-666. https://doi.org/10.1080/14787210.2018.1512856

Anderson, E., d’Orey, M.A.J., Duvendack, M. & Esposito, L. 2018. Does government spending affect income poverty? A meta-regression analysis. World Development 103: 60-71. https://doi.org/10.1016/j.worlddev.2017.10.006

Braun, M.R., Altan, H. & Beck, S.B.M. 2014. Using regression analysis to predict the future energy consumption of a supermarket in the UK. Applied Energy 130: 305-313. https://doi.org/10.1016/j.apenergy.2014.05.062

Collins, G.S., Reitsma, J.B., Altman, D.G. & Moons, K.G.M. 2015. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD Statement. European Urology 350: g7584. https://doi.org/10.1016/j.eururo.2014.11.025

Fisher-Hoch, S.P., Tomori, O., Nasidi, A., Perez-Oronoz, G.I., Fakile, Y., Hutwagner, L. & McCormick, J.B. 1995. Review of cases of nosocomial Lassa fever in Nigeria: The high price of poor medical practice. BMJ (Clinical Research Ed.) 311(7009): 857-859. https://doi.org/10.1136/bmj.311.7009.857

Frame, J.D., Baldwin, J.M., Gocke, D.J. & Troup, J.M. 1970. Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings. The American Journal of Tropical Medicine and Hygiene 19(4): 670-676. https://doi.org/10.4269/ajtmh.1970.19.670

Ghosal, S., Sengupta, S., Majumder, M. & Sinha, B. 2020. Linear Regression Analysis to predict the number of deaths in India due to SARS-CoV-2 at 6 weeks from day 0 (100 cases - March 14th 2020). Diabetes & Metabolic Syndrome: Clinical Research & Reviews 14(4): 311-315. https://doi.org/10.1016/j.dsx.2020.03.017

Grace, J.U.A., Egoh, I.J. & Udensi, N. 2021. Epidemiological trends of Lassa fever in Nigeria from 2015-2021: A review. Therapeutic Advances in Infectious Disease 8: 20499361211058252. https://doi.org/10.1177/20499361211058252

Heinemann, F., Moessinger, M.D. & Yeter, M. 2018. Do fiscal rules constrain fiscal policy? A meta-regression-analysis. European Journal of Political Economy 51. https://doi.org/10.1016/j.ejpoleco.2017.03.008

Hemingway, H., Croft, P., Perel, P., Hayden, J.A., Abrams, K., Timmis, A., Briggs, A., Udumyan, R., Moons, K.G.M., Steyerberg, E.W., Roberts, I., Schroter, S., Altman, D.G. & Riley, R.D. 2013. Prognosis research strategy (PROGRESS) 1: A framework for researching clinical outcomes. BMJ 346: e5595. https://doi.org/10.1136/bmj.e5595

Jee, S.H., Jang, Y., Oh, D.J., Oh, B.H., Lee, S.H., Park, S.W., Seung, K.B., Mok, Y., Jung, K.J., Kimm, H., Yun, Y.D., Baek, S.J., Lee, D.C., Choi, S.H., Kim, M.J., Sung, J., Cho, B., Kim, E.S., Yu, B.Y., Lee, T-Y., Kim, J.S., Lee, Y-J., Oh, J-K., Kim, S.H., Park, J-K., Koh, S.B., Park, S.B., Lee, S.Y., Yoo, C-I., Kim, M.C., Kim, H-K., Park, J-S., Kim, H.C., Lee, G.J. & Woodward, M. 2014. A coronary heart disease prediction model: the Korean Heart Study. BMJ Open 4(5): e005025. https://doi.org/10.1136/bmjopen-2014-005025

Kattan, M.W. & Gerds, T.A. 2020. A framework for the evaluation of statistical prediction models. In CHEST 158(1 Supplement): S29-S38. https://doi.org/10.1016/j.chest.2020.03.005

Laicane, I., Blumberga, D., Blumberga, A. & Rosa, M. 2015. Comparative multiple regression analysis of household electricity use in Latvia: Using smart meter data to examine the effect of different household characteristics. Energy Procedia 72: 49-56. https://doi.org/10.1016/j.egypro.2015.06.008

Laupacis, A., Sekar, N. & Stiell, I.G. 1997. Clinical prediction rules. A review and suggested modifications of methodological standards. JAMA 277(6): 488-494.

Lee, Y.H., Bang, H. & Kim, D.J. 2016. How to establish clinical prediction models. Endocrinology and Metabolism 31(1): 38-44. https://doi.org/10.3803/EnM.2016.31.1.38

Liu, J. 2004. Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese Multi-Provincial Cohort Study. JAMA 291(21): 2591-2599. https://doi.org/10.1001/jama.291.21.2591

Mahdiani, M.R. & Khamehchi, E. 2016. A modified neural network model for predicting the crude oil price. Intellectual Economics 10(2): 71-77. https://doi.org/10.1016/j.intele.2017.02.001

Moons, K.G.M., Royston, P., Vergouwe, Y., Grobbee, D.E. & Altman, D.G. 2009. Prognosis and prognostic research: What, why, and how? BMJ 338: b375. https://doi.org/10.1136/bmj.b375

Musa, S.S., Zhao, S., Abdullahi, Z.U., Habib, A.G. & He, D. 2022. COVID-19 and Lassa fever in Nigeria: A deadly alliance? International Journal of Infectious Diseases 117: 45-47. https://doi.org/10.1016/j.ijid.2022.01.058

NATHNaC. 2022. March 18. Lassa Fever in Nigeria. https://Travelhealthpro.Org.Uk/Updates.Php?Base=1599.

NCDC. 2022, April 1. An Update of Lassa Fever Outbreak in Nigeria. https://Ncdc.Gov.Ng/Diseases/Sitreps/?Cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20Nigeria

NCDC 2019. Lassa Fever. https://www.ncdc.gov.ng/diseases/info/L.

Okoro, O.A., Bamgboye, E., Dan-Nwafor, C., Umeokonkwo, C., Ilori, E., Yashe, R., Balogun, M., Nguku, P. & Ihekweazu, C. 2020. Descriptive epidemiology of Lassa fever in Nigeria, 2012-2017. Pan African Medical Journal 37(15). https://doi.org/10.11604/pamj.2020.37.15.21160

Okwonu, F.Z., Ahad, N.A., Hamid, H., Muda, N. & Sharipov, O.S. 2023. Enhanced robust univariate classification methods for solving outliers and overfitting problems. Journal of Information Communication Technology 22(1): 1-30.

Okwonu, F.Z., Ahad, N.A., Apanapudor, J.S. & Arunaye, F.I. 2021. Robust multivariate correlation techniques: A confirmation analysis using COVID-19 data set. Pertanika Journal of Science and Technology 29(2): 999-1015. https://doi.org/10.47836/pjst.29.2.16

Okwonu, F.Z., Laro Asaju, B. & Irimisose Arunaye, F. 2020. Breakdown analysis of Pearson correlation coefficient and robust correlation methods. IOP Conference Series: Materials Science and Engineering 917: 012065. https://doi.org/10.1088/1757-899X/917/1/012065

Onyeji, E. 2022. In 2021, Nigeria Witnessed Decline in Lassa Fever Infections, Deaths – Official. 10 January 2022. https://www.premiumtimesng.com/news/more-news/505001-in-2021-nigeria-witnessed-decline-in-lassa-fever-infections-deaths-official.html?tztc=1

Pérez-Rave, J.I., Correa-Morales, J.C. & González-Echavarría, F. 2019. A machine learning approach to big data regression analysis of real estate prices for inferential and predictive purposes. Journal of Property Research 36(1): 59-96. https://doi.org/10.1080/09599916.2019.1587489

Rath, S., Tripathy, A. & Tripathy, A.R. 2020. Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model. Diabetes and Metabolic Syndrome: Clinical Research and Reviews 14(5): 1467-1474. https://doi.org/10.1016/j.dsx.2020.07.045

Redding, D.W., Gibb, R., Dan-Nwafor, C.C., Ilori, E.A., Yashe, R.U., Oladele, S.H., Amedu, M.O., Iniobong, A., Attfield, L.A., Donnelly, C.A., Abubakar, I., Jones, K.E. & Ihekweazu, C. 2021. Geographical drivers and climate-linked dynamics of Lassa fever in Nigeria. Nature Communications 12: 5759. https://doi.org/10.1038/s41467-021-25910-y

Richmond, J.K. & Baglole, D.J. 2003. Lassa fever: Epidemiology, clinical features, and social consequences. BMJ (Clinical Research) 327(7426): 1271-1275. https://doi.org/10.1136/bmj.327.7426.1271

Royston, P., Moons, K.G.M., Altman, D.G. & Vergouwe, Y. 2009. Prognosis and prognostic research: Developing a prognostic model. BMJ 338: b604. https://doi.org/10.1136/bmj.b604

Shrestha, N. 2020. Detecting multicollinearity in regression analysis. American Journal of Applied Mathematics and Statistics 8(2): 39-42. https://doi.org/10.12691/ajams-8-2-1

Steyerberg, E.W. & Vergouwe, Y. 2014. Towards better clinical prediction models: Seven steps for development and an ABCD for validation. European Heart Journal 35(29): 1925-1931. https://doi.org/10.1093/eurheartj/ehu207

Steyerberg, E.W., Moons, K.G.M., van der Windt, D.A., Hayden, J.A., Perel, P., Schroter, S., Riley, R.D., Hemingway, H. & Altman, D.G. 2013. Prognosis Research Strategy (PROGRESS) 3: Prognostic model research. PLoS Medicine 10(2): e1001381. https://doi.org/10.1371/journal.pmed.1001381

Uzoma, I.R., Dan-Nwafor, C., Ipadeola, O., Rimamdeyati, Y., Iniobong, A., Okoro, B., Namara, G., Uzoma, E., Ilori, E. & Ihekweazu, C. 2020. Increasing trend of Lassa fever outbreak in Nigeria: The more you look, the more you see. International Journal of Infectious Diseases 101. https://doi.org/10.1016/j.ijid.2020.09.936

van Smeden, M., Reitsma, J.B., Riley, R.D., Collins, G.S. & Moons, K.G. 2021. Clinical prediction models: Diagnosis versus prognosis. In Journal of Clinical Epidemiology 132: 142-145. https://doi.org/10.1016/j.jclinepi.2021.01.009

World Health Organization. 2022. Disease Outbreak News; Lassa Fever-Nigeria. https://www.who.int/emergencies/disease-outbreak-news/item/lassa-fever---nigeria. Lassa Fever - Nigeria

Yaro, C.A., Kogi, E., Opara, K.N., Batiha, G.E.S., Baty, R.S., Albrakati, A., Altalbawy, F.M.A., Etuh, I.U. & Oni, J.P. 2021. Infection pattern, case fatality rate and spread of Lassa virus in Nigeria. BMC Infectious Diseases 21(1): 149. https://doi.org/10.1186/s12879-021-05837-x

Zaresani, A. & Scott, A. 2021. Is the evidence on the effectiveness of pay for performance schemes in healthcare changing? Evidence from a meta-regression analysis. BMC Health Services Research 21: 175. https://doi.org/10.1186/s12913-021-06118-8

Zhu, P. & Sun, F. 2020. Sports athletes’ performance prediction model based on machine learning algorithm. Advances in Intelligent Systems and Computing 1017: 498-505. https://doi.org/10.1007/978-3-030-25128-4_62

 

*Pengarang untuk surat-menyurat; email: aishah@uum.edu.my

 

 

 

 

 

 

sebelumnya